IEEE

ABSTRACT

The standard methods for tree searching,
such as breadth first and depth first searches
suffer from space and time limitations respec-
tively. The depth first iterative deepening tree
searching method attempts to overcome the

limitations of these standard methods of tree
searching. However, this is not optimal in
space.

A new method for searching tree that uses
reduced amount of space is developed. The
proposed method is a combination of breadth
first, minimum space pebbling strategy and
the modified iterative deepening depth first
searches.

I. INTRODUCTION

Efficient searching of trees is fundamental
to many areas of study, such as Artificial Intel-
ligence, Operation Research, and Computer Sci-
ence at large. Most Artificial Intelligence prob-
lems, especially game-playing, use heuristic in-

formation to direct the search that is relevant to
the goal. Since the size of a decision or game

tree encountered in such problems is very large,
it becomes physically impossible to completely
search the tree. Thus it becomes important to
develop an efficient method for searching and/or
pruning the tree. For more details see Knuth and
Moore [1], Nilsson [2] , and Slagle and Dixon [3].

The methods widely used in searching trees
are breadth first (BFS) and depth first (DFS)

searches and both of them have serious limijta-
tions. For example, breadth first search requires

large amounts of space, and depth first search

\4

Session 12A4
Mixed Strategy For Tree Search

S.S. Iyengar, Takahisa Miyata
Enamul Haq

Computer Science

Louisians State University
Baton Rouge, Louisiana

requires too much time for searching and does
not guarrantee the shortest path solution for a
graph. Recently, Korf [4] demonstrated the gen-
erality of depth first iterative deepening search
algorithm (DFID), proved its optimality in time
for exponential tree searches, and further showed
its application to different Artficial Intelligence
problems. The depth first iterative deepening
has some inherent disadvantages. In fact, DFID
is optimal in time but not in space. The al-
gonthms that trade time for reduced space are
given in [5] and these algorithms are the modifi-
cations of the existing depth first, breadth first
and heuristic tree searching algorithms.

In this paper, we propose a new mixed strat-
egy of tree searching that is efficient in space.
The proposed method is a combination of the
breadth first, the minimum space pebbling strat-
egy and the modiﬁed depth first iterative deepen-
ing algorithms (MDFID). The MDFID is opti-

mal in space while retaining the time optimality.

We will analyze the complexity of the algo-
rithms using three parameters : the depth (d)
of the tree, the node branching factor (b), and
the computational efficiency described as the to-
tal number of nodes generated during the search.
The branching factor is the number of children
of each node, averaged over the entire tree. The

time cost of a search in a tree is the number of
nodes that are examined during the search. The

space cost is the number of nodes that need to
be stored during the search .

The remainder of the paper is organized as

follows : Section - Il reviews_ the current search
methods section - III introduces the new mod-

ified depth first iterative deepening method and
presents an analysis of the complexity, and sec-
tion - IV concludes the paper.

Proceedings - 1989 Southeastcon

995 CH2674-5/89/0000-0995$01.0001989IEEE

II. CURRENT SEARCH METHODS

Several algorithms have been suggested over
the years for doing efficient tree searching. In
this section some of the well known existing tree
searching methods are reviewed.

Breadth First Search (BFS)

The Breadth first search examines all the
nodes one step away from the root node, then

two steps away from the root node and so on
until the goal node is reached. In the worst case,
the BFS must examine all the nodes up to a
depth d which can be described as follows:

T=b+b2+0°+...+bt=00%) (2.1)

On the average, half of these nodes must be ex-
amined , leading to a time complexity of O(b%).
Also since all nodes at the previous step must
be stored to generate the nodes at the next step,
BFS has a space complexity of O(b%!) which is
o(b?).

Depth First Search (DFS)

The depth first search examines the descen-
dants of the most recently examined node and
continues until some cutoff depth is reached .
Ouly the nodes on the path from the initial node
to the current node need to be stored, and hence
DF'S has space complexity of O(d) and time com-

plexity of O(b%). Thus DFS is time bounded
rather than space . It also has the problem
that the improper selection of the arbitrary cut-
off depth could result in the failure of the search.

Minimum Space Pebbling Strategy
(MSPS)

In minimum space pebbling strategy, all the
leaves in the tree can be pebbled by only one
pebble that follows a unique path connecting the
root to the leaf [5]. Once the single pebble used
reaches a leaf, then to pebble the next leaf, it is
required to start from the root and entirely re-
peat the same process. Thus the space required
for this method is O(1). However, this method

suffers from the time complexity of O(db?).

Depth First Iterative Deepening Method

An algorithm that eliminates the drawbacks
with earlier two techniques, as suggested by Korf
[4] is now described. It is called Depth First

\4

Iterative Deepening Method (DFID) and can be
described as follows:

1) First perform a depth first search to depth
one.

2) If no solution is found, then discard all the
nodes generated in the earlier search, do a
depth first search to depth two, three and so

on until the solution is found or the entire
tree has been traversed or the cutoff depth

has been reached.

Now we analyze the DFID by the three pa-
rameters mentioned earlier. The nodes at depth
d are generated once during the final iteration of
the search, the nodes at depth (d — 1) are gener-
ated twice and so on. Thus the total time, which
is proportional to the total number of nodes gen-
erated, can be computed as follows:

T=b 42601 4. . 4db (2.2)

which is less than 44(1 — 1/b)~2. However (1 —
1/b)~2 is a constant, leading to a time complex-
ity of O(b?). Since at any stage, DFID is doing
a depth first search for one level at a time, the
space complexity is O(d) and the path to the so-
lution is the shortest. However, it has the short-
coming that computations done at lower levels
are wasted.

I1I. THE PROPOSED METHOD

The proposed method has three phases. In
each of these three phases, an appropriate search
is performed so that the computation and space
requirements can be reduced.

PHASE 1

Starting at the root of the search tree , per-
form BFS for the next log(logd) levels. Let
k = logd, where d is the cutoff depth of the
search. All logarithmic quantities used in this
paper have base b (branching factor). The time
complexity for this phase is

log k
T1=Zbi=b+b2+,..+bl°g“°gd) (31)
=0)

= O(logd)

and the space required for this phase is

Proceedings - 1989 Southeastcon

996

S1 =k = O(logd) (3.2)

At the end of this phase the logd nodes at depth
log k are stored. These are used to generate the

lower level nodes and are needed until the entire
search tree has been traversed.

PHASE II

If the goal has not been found in phase I,
then DFID is executed from depth (logk + 1)
down to depth (logk + logd). This is repeated
for all subtrees having their root at depth log k.
This phase is terminated when logd iterations
have been carried out or a goal node is reached.

Since DFID is performed for logd subtrees
each with log d levels. The time required for this
phase is derived from (2.2) as follows. Let Q =
(logd—-1) .

k—1
=k Z)b+t = (log d)-
((log d)b + Q% + ... + 269 4 plogd)
= O(dlogd)
(3.3)

Because it is required to store logd nodes at
depth logk and another logd nodes for DFID,

the space required for this phase is

Sy =k+k=2logd = O(logd) (3.4)

PHASE III

This phase is invoked if a goal node has not
been found in phase I and II. The search tech-
nique used in this phase is called Modified Iter-
ative Deepening Depth First search (MDFID).
First, for each subtree having its root at depth
log (log d), perform MSPS down to log (logd)+1
and then DFS down to log (logd) 4+ logd + 1 for
the blog(logd)+1 syhtrees. Then again for each
subtree having its root at depth log (logd) , per-
form MSPS down to depth log (logd) + 2 and
then DFS down to log (logd) + logd + 2 for all
the blog (log d)+2 sybtrees. This process is contin-
ued until either a goal node is reached or all the
nodes at depth d are generated.

The time complexity of this phase is ana-
lyzed as follows. Let P = (d — k —logk + 1).
Nodes examined for logd subtrees having their
root at log (logd) during minimum space peb-
bling from depth log (log d) to depth :

loglogd + 1 : nodes examined = (2b')logd

loglogd + 2 : nodes examined = (3b*)logd
loglogd + (d — k —

nodes examined =

logk) :
(Pbd—-k—log k) IOg d

Therefore the total nodes examined by the min-
imum space pebbling strategy is

T, = k[2b+ 3b% 4 ... 4 Pbd~F-logk] (35)
At each stage DFS is performed for a depth of
k. The number of nodes examined by DFS from
depth logk +1tologk+1+kis (b+b2+...+
b*)plos k+1 Therefore the total number of nodes
examined by DFS, till it reaches the depth d is

Ty=(b+b+...+b%).
(blog k+1 + blog k+2 4.+ bd—k—log k)
(3.6)
Thus the total nodes examined in phase III is
given by
=Ty + T, (3.7)
Let | = (d —logk — k) and p = (d — 2logk —

k). After some algebraic manipulation T3 can
be written as

kb(b* — 1) b(b? —1) (4 1)bH2

Ty = [(b—1)

b-1) (b-1)
1 I+l p2
—_— b* —2b
(b—l)z{(l+2)b + H
(3.8)
Neglecting (b — 2b) from equation (3.8), we get
]2
Ts = C "_’bl)z (b* - 1)(0" — 1)+
L (3.9)
- 1 bl+2) bl+1
Gl DB 1 2
Assuming b* >> 1 and b >> 1, we get
kb? kb2 (I+1)
_ jd—logk _
Ts=b [(b 1)2blogk + (b-1)2 bk
kb (1+ 2)]
(b—1)2 bb*
(3.10)

1
@ E Proceedings - 1989 Southeastcon
E

997

Now, using the fact that b* = b1°8¢ = d in equa-
tion(3.10) T5 can be further simplified as

i 1 (141 (1+2)

L=t d " e)

. 2 . .
Assuming (b_ET)_z ~ 1, T3 is written as

1 I+1 142
r=pil 4 (21 (42

] (3.11)

Therefore

T; = O(b%) (3.12)

Since the logd nodes at a depth log (logd) and
another log d nodes for the performance of DFS
must be stored, the space requirement for this
phase is

Sy =k+k=2logd=0(logd) (3.13)

Based on the above analysis, we now state a the-
orem for the performance of our new method.

Theorem 3.1

For k£ = logd, the total time and space re-
quired for this search are T = O(b%) and S =
O(log d) respectively.

proof:

From equation (3.1),(3.3) and (3.12), the to-.

tal number of nodes generated during the search
can be expressed as follows:

T=T+T:+T; = 0%

Also from equation (3.2),(3.4) and (3.13), the
total space required for this search is

S = O(log d)

Performance Analysis of
The Proposed Method

The performance of the proposed method
over the existing tree searching methods is sum-
marized in table (3.1). Carlson’s method [5] of
tree searching is also included in table (3.1) for
the comparison of the performance of the pro-
posed method. Carlson modified the standard
DFS and BFS methods of tree searching by us-
ing the minimum space pebbling strategy with
DF'S and BFS. Ou the other hand, the proposed

\

method is based on the modified iterative deep-
ening depth first search. Even though the pro-
posed method and Carlson’s method have the
same order of time and space requirements, the
proposed method has the advantage that it finds
the solution along the shortest path.

Table 3.1 - Performance of the proposed
method compared with the existing
methods

Method Time Space
Proposed Method o(b?) O(logd)
BFS o(b?) 0(b?)
DFS o(b?) 0(b?)
DFID 0(b%) 0(d)
MSPS O(db?) 0(1)
Carlson’s Method 0o(b%) O(logd)

IV. CONCLUSION

The proposed method of tree searching re-
duces the space requirements compared to the
existing BFS, DFS and DFID methods, with-
out increasing the order of the time complexity.
However, there is a time space trade off inherent
in this problem, since the strategies using min-
imum space require time greater than linear in
the size of the tree. This method may be applied
in any searching problem where BFS,DFS,DFID
or any other standard searching methods is ap-
plicable.

REFERENCES

[1] Knuth,D. E. and Moore, R. W., An Analy-
sis of Alpha-Beta Pruning, Artificial Intelli-
gence, pp. 293-326, 1975.

[2] Nilsson, N. J., Principles of Artificial Intel-
ligence, Tioga Publication Co., 1980.

(3] Slagle, J. R., and Dixon, J. D., Experiments
with Soe Program that Search Game Trees,
J. Assoc. Comput., March, pp. 189-207,

1969.

[4] Korf,R. E., Depth First Iterative Deepen-
ing : An Optimal Admissible Tree Search,
Artificial Intelligence, Vol. 27, pp. 97-109,

1985.

(5] David A. Carlson,Time-Space Trade Offs for
Tree Search and Traversal , IEEE, ch2345-7,
1986, pp. 585-594.

Proceedings - 1989 Southeastcon

998

